[...] the scientist subconsciously, almost inadvertently, simplifies his problem of understanding Nature by disregarding or cutting out of the picture to be constructed himself, his own personality, the subject of cognizance.
One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device [...] in a Geiger counter, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.
"The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead."

Rüdiger Schack Royal Holloway, University of London
QBism and the Greeks, or how to interpret quantum mechanics
Schrödinger’s Cat

Compare Schrödinger:

The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.

with Wikipedia:

The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead.
Psi-function, $|\psi\rangle$ (or wave function, or quantum state)

$|\psi\rangle$ determines probabilities

The psi-function for a physical system encodes, via the Born rule, the outcome probabilities for arbitrary measurements on the system.
The psi-function for a physical system encodes, via the Born rule, the outcome probabilities for arbitrary measurements on the system.

For any physical system there are a so-called informationally complete, or tomographic, measurements whose outcome probabilities determine the system’s psi-function.
Psi-function, $|\psi\rangle$ (or wave function, or quantum state)

$|\psi\rangle$ determines probabilities

The psi-function for a physical system encodes, via the Born rule, the outcome probabilities for arbitrary measurements on the system.

$|\psi\rangle$ is equivalent to a probability distribution

For any physical system there are a so-called informationally complete, or tomographic, measurements whose outcome probabilities determine the system’s psi-function.

Quantum mechanics is a theory of probabilities
"The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts."

\[|\psi\rangle = \frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}} \]
Botched attempt at a Quantum Bayesian account of Schrödinger’s Cat in Scientific American

Standard interpretation: Wave function implies cat is both dead and alive

Quantum Bayesianism: Wave function describes mental state only; cat is either dead or alive
Quantum mechanics is a theory of probabilities.
Quantum mechanics is a theory of probabilities.

Whose probabilities?
Quantum mechanics is a theory of probabilities.

Whose probabilities?

→ Bruno de Finetti
Quantum mechanics is a theory of probabilities.

Whose probabilities?
→ Bruno de Finetti

Probabilities of what?
Quantum mechanics is a theory of probabilities.

Whose probabilities?

→ Bruno de Finetti

Probabilities of what?

→ Nature and the Greeks
Heads or Tails

Tossing a “fair” coin, following *The Logic of Science* by E. T. Jaynes:

Observation 1
prob = 1/2 is not a property of the coin.

Observation 2
prob = 1/2 is not a joint property of coin and tossing mechanism.

Observation 3
Any probability assignment starts from a prior probability.
Heads or Tails

Tossing a “fair” coin, following *The Logic of Science* by E. T. Jaynes:

Observation 1

$\text{prob} = 1/2$ is not a property of the coin.
Heads or Tails

Tossing a “fair” coin, following *The Logic of Science* by E. T. Jaynes:

Observation 1
prob = 1/2 is not a property of the coin.

Observation 2
prob = 1/2 is not a joint property of coin and tossing mechanism.
Tossing a “fair” coin, following *The Logic of Science* by E. T. Jaynes:

Observation 1

prob = 1/2 is not a property of the coin.

Observation 2

prob = 1/2 is not a joint property of coin and tossing mechanism.

Observation 3

Any probability assignment starts from a *prior probability*.
PROBABILITY DOES NOT EXIST
The abandonment of superstitious beliefs about the existence of Phlogiston, the Cosmic Ether, Absolute Space and Time . . . , or Fairies and Witches, was an essential step along the road to scientific thinking. Probability, too, if regarded as something endowed with some kind of objective existence, is no less a misleading misconception, an illusory attempt to exteriorize or materialize our actual probabilistic beliefs.
What is probability? Whose probability?

- A probability is a number assigned by an agent (a user of probability theory) to an event to quantify the strength of his belief that the event will happen.
What is probability? Whose probability?

- A probability is a number assigned by an agent (a user of probability theory) to an event to quantify the strength of his belief that the event will happen.

- The agent uses his probability assignments to make decisions in the face of uncertainty.
What is probability? Whose probability?

- A probability is a number assigned by an agent (a user of probability theory) to an event to quantify the strength of his belief that the event will happen.

- The agent uses his probability assignments to make decisions in the face of uncertainty.

- Probabilities can be assigned to single events as well as repeated trials.
A probability is a number assigned by an agent (a user of probability theory) to an event to quantify the strength of his belief that the event will happen.

The agent uses his probability assignments to make decisions in the face of uncertainty.

Probabilities can be assigned to single events as well as repeated trials.

Different agents with different beliefs will in general assign different probabilities.
What is probability? Whose probability?

- A probability is a number assigned by an agent (a user of probability theory) to an event to quantify the strength of his belief that the event will happen.
- The agent uses his probability assignments to make decisions in the face of uncertainty.
- Probabilities can be assigned to single events as well as repeated trials.
- Different agents with different beliefs will in general assign different probabilities.
- This is the theory of personalist Bayesian probability due to de Finetti, Ramsey, Savage, Jeffrey and others.
Dutch book (adapted from Wikipedia)

<table>
<thead>
<tr>
<th>horse</th>
<th>odds offered</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>even</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1:3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!
Dutch book (adapted from Wikipedia)

Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!

<table>
<thead>
<tr>
<th>horse</th>
<th>odds offered</th>
<th>amount bet</th>
<th>payout if horse wins</th>
<th>net loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>even</td>
<td>$120</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td>$80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1:3</td>
<td>$60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>$260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!

<table>
<thead>
<tr>
<th>horse</th>
<th>odds offered</th>
<th>amount bet</th>
<th>payout if horse wins</th>
<th>net loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>even</td>
<td>$120</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td>$80</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1:3</td>
<td>$60</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>$260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dutch book (adapted from Wikipedia)

Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!

<table>
<thead>
<tr>
<th>horse</th>
<th>odds offered</th>
<th>amount bet</th>
<th>payout if horse wins</th>
<th>net loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>even</td>
<td>$120</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td>$80</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1:3</td>
<td>$60</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>$260</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!
Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!
Dutch book (adapted from Wikipedia)

Unlike roulette, where one is certain to lose in the long run, here the bettor will lose $20 with certainty in a single race!

<table>
<thead>
<tr>
<th>horse</th>
<th>odds offered</th>
<th>implied prob.</th>
<th>amount bet</th>
<th>payout if horse wins</th>
<th>net loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>even</td>
<td>1/2</td>
<td>$120</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td>1/3</td>
<td>$80</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>3</td>
<td>1:3</td>
<td>1/4</td>
<td>$60</td>
<td>$240</td>
<td>$20</td>
</tr>
<tr>
<td>total</td>
<td>13/12</td>
<td>$260</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Personalist Bayesian probability

Definition
To assign probability p to an event E means to regard as fair a bet on E at the odds implied by p.

In other words,
I am happy to bet on E at these odds or any more favourable odds, but not at less favourable odds.
To assign probability p to an event E means to regard as fair a bet on E at the odds implied by p. In other words, I am happy to bet on E at these odds or any more favourable odds, but not at less favourable odds.

An agent’s probability assignments are called Dutch book coherent if they rule out the possibility of a Dutch book.
Personalist Bayesian probability

Definition

To assign probability p to an event E means to regard as fair a bet on E at the odds implied by p.

Definition

An agent’s probability assignments are called *Dutch book coherent* if they rule out the possibility of a Dutch book.

Theorem

An agent’s probability assignments are Dutch book coherent if and only if they obey the standard probability rules.
Bayesian statistics in a nutshell

- Start from your prior probabilities (= prior belief), collect data to refine and update these, and use the updated “posterior” probabilities to make predictions.

Bayesian statistics is implied by Dutch-book coherence. Bayesian statistics has become mainstream in the last two decades due to powerful computers and new algorithms (in particular, MCMC). Bayesian statistics has been used by Nate Silver to predict the outcomes of recent US elections with spectacular success.
Bayesian statistics in a nutshell

- Start from your prior probabilities (= prior belief), collect data to refine and update these, and use the updated “posterior” probabilities to make predictions.
- Bayesian statistics is implied by Dutch-book coherence.
Bayesian statistics in a nutshell

- Start from your prior probabilities (= prior belief), collect data to refine and update these, and use the updated “posterior” probabilities to make predictions.
- Bayesian statistics is implied by Dutch-book coherence.
- Bayesian statistics has become mainstream in the last two decades due to powerful computers and new algorithms (in particular, MCMC).
Bayesian statistics in a nutshell

- Start from your prior probabilities (= prior belief), collect data to refine and update these, and use the updated "posterior" probabilities to make predictions.
- Bayesian statistics is implied by Dutch-book coherence.
- Bayesian statistics has become mainstream in the last two decades due to powerful computers and new algorithms (in particular, MCMC).
- Bayesian statistics has been used by Nate Silver to predict the outcomes of recent US elections with spectacular success.
PROBABILITY DOES NOT EXIST
The abandonment of superstitious beliefs about the existence of Phlogiston, the Cosmic Ether, Absolute Space and Time . . . , or Fairies and Witches, was an essential step along the road to scientific thinking. Probability, too, if regarded as something endowed with some kind of objective existence, is no less a misleading misconception, an illusory attempt to exteriorize or materialize our actual probabilistic beliefs.
QUANTUM STATES DO NOT EXIST
The abandonment of superstitious beliefs about the existence of Phlogiston, the Cosmic Ether, Absolute Space and Time . . . , or Fairies and Witches, was an essential step along the road to scientific thinking. Quantum states, too, if regarded as something endowed with some kind of objective existence, are no less a misleading misconception, an illusory attempt to exteriorize or materialize our actual probabilistic beliefs.
What is a quantum state? Whose quantum state?

- A quantum state (or psi-function) for a physical system is assigned by an agent (a user of quantum mechanics) and reflects his personal beliefs.
What is a quantum state? Whose quantum state?

- A quantum state (or psi-function) for a physical system is assigned by an agent (a user of quantum mechanics) and reflects his personal beliefs.

- The agent’s quantum state encodes his personalist Bayesian probabilities for the outcomes of his measurements on the system.
What is a quantum state? Whose quantum state?

- A quantum state (or psi-function) for a physical system is assigned by an agent (a user of quantum mechanics) and reflects his personal beliefs.

- The agent’s quantum state encodes his personalist Bayesian probabilities for the outcomes of his measurements on the system.

- Any quantum state assignment starts from a prior quantum state.
What is a quantum state? Whose quantum state?

- A quantum state (or psi-function) for a physical system is assigned by an agent (a user of quantum mechanics) and reflects his personal beliefs.

- The agent’s quantum state encodes his personalist Bayesian probabilities for the outcomes of his measurements on the system.

- Any quantum state assignment starts from a prior quantum state.

- Different agents with different beliefs will in general assign different quantum states.
A quantum state (or psi-function) for a physical system is assigned by an agent (a user of quantum mechanics) and reflects his personal beliefs.

The agent’s quantum state encodes his personalist Bayesian probabilities for the outcomes of his measurements on the system.

Any quantum state assignment starts from a prior quantum state.

Different agents with different beliefs will in general assign different quantum states.

Quantum mechanics provides rules for the agent to update his quantum state in the light of measurement data.
What about a quantum random number generator?
What about a quantum random number generator?

An agent’s probabilities for 0 and 1 depend on the his prior quantum state for the device, i.e., on his prior belief.
Botched attempt at a Quantum Bayesian account of Schrödinger's Cat in Scientific American

Standard interpretation: Wave function implies cat is both dead and alive

Quantum Bayesianism: Wave function describes mental state only; cat is either dead or alive
Schrödinger’s Cat, revisited

Schrödinger

The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.

Wikipedia

The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead.
Schrödinger

The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.

Wikipedia

The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead.

QBism

The psi-function expresses an agent’s beliefs about the outcomes of his measurements on the entire system, including his probabilities for finding the cat dead or alive.
Schrödinger

The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.

Wikipedia

The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead.

QBism

The psi-function expresses an agent’s beliefs about the outcomes of his measurements on the entire system, including his probabilities for finding the cat dead or alive.

So when did the cat die, exactly?

Rüdiger Schack, Royal Holloway, University of London
QBism and the Greeks, or how to interpret quantum mechanics
The thought experiment

Wigner leaves his friend in a closed lab with the box containing cat and radioactive substance. After one hour, the friend opens the box. After two hours, Wigner returns.

What should Wigner do? Either,

- he writes down a psi-function with "cat alive/friend happy" and "cat dead/friend sad" smeared out in equal parts. Before he opens the lab, the cat is neither dead nor alive.

Or,

- because his friend opened the box, Wigner reasons that the lab definitely contains either a sad friend and a dead cat, or a happy friend and a live cat. Therefore Wigner writes down equal probabilities for the two cases.
Wigner’s friend

The thought experiment

Wigner leaves his friend in a closed lab with the box containing cat and radioactive substance. After one hour, the friend opens the box. After two hours, Wigner returns.

What should Wigner do? Either,

he writes down a psi-function with “cat alive/friend happy” and “cat dead/friend sad” smeared out in equal parts. Before he opens the lab, the cat is neither dead nor alive.
Wigner’s friend

The thought experiment

Wigner leaves his friend in a closed lab with the box containing cat and radioactive substance. After one hour, the friend opens the box. After two hours, Wigner returns.

What should Wigner do? Either,

he writes down a psi-function with “cat alive/friend happy” and “cat dead/friend sad” smeared out in equal parts. Before he opens the lab, the cat is neither dead nor alive.

Or,

because his friend opened the box, Wigner reasons that the lab definitely contains either a sad friend and a dead cat, or a happy friend and a live cat. Therefore Wigner writes down equal probabilities for the two cases.
Who is right, Wigner or his friend?

Wigner:
Before I open the lab after two hours, the cat is neither dead nor alive.

His friend:
As soon as I open the box, after one hour, the cat is alive or dead.
Some attempts to resolve the paradox

- Bohmian Mechanics.
Some attempts to resolve the paradox

- Bohmian Mechanics.
- Many Worlds.
Some attempts to resolve the paradox

- Bohmian Mechanics.
- Many Worlds.
- Decoherence theory.
Some attempts to resolve the paradox

- Bohmian Mechanics.
- Many Worlds.
- Decoherence theory.
- Spontaneous Collapse models.
Some attempts to resolve the paradox

- Bohmian Mechanics.
- Many Worlds.
- Decoherence theory.
- Spontaneous Collapse models.
- Relational Quantum Mechanics.
Some attempts to resolve the paradox

- Bohmian Mechanics.
- Many Worlds.
- Decoherence theory.
- Spontaneous Collapse models.
- Relational Quantum Mechanics.
- “Shut up and calculate” (i.e., “we know how to apply quantum mechanics FAPP”).
Some attempts to resolve the paradox

- Bohmian Mechanics.
- Many Worlds.
- Decoherence theory.
- Spontaneous Collapse models.
- Relational Quantum Mechanics.
- “Shut up and calculate” (i.e., “we know how to apply quantum mechanics FAPP”).
- Together these represent a murkiness that is unheard of for a theory as successful as quantum mechanics.
Who is right, Wigner or his friend?

Wigner:
Before I open the lab after two hours, the cat is neither dead nor alive.

His friend:
As soon as I open the box, after one hour, the cat is alive or dead.

QBism:
They are both right.
Who is right, Wigner or his friend?

Wigner:
Before I open the lab after two hours, the cat is neither dead nor alive.

His friend:
As soon as I open the box, after one hour, the cat is alive or dead.

QBism:
They are both right.
Copenhagen versus QBism

Copenhagen interpretation:
A measurement corresponds to a laboratory procedure.

QBism:
A measurement is any action an agent takes to elicit an experience.
<table>
<thead>
<tr>
<th>Copenhagen interpretation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A measurement corresponds to a laboratory procedure.</td>
</tr>
<tr>
<td>A measurement outcome is a classical pointer reading.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QBism:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A measurement is any action an agent takes to elicit an experience.</td>
</tr>
<tr>
<td>A measurement outcome is the particular experience of that agent so elicited.</td>
</tr>
</tbody>
</table>
Copenhagen versus QBism

Copenhagen interpretation:

A measurement corresponds to a laboratory procedure.
A measurement outcome is a classical pointer reading.
A measurement outcome is objective.

QBism:

A measurement is any action an agent takes to elicit an experience.
A measurement outcome is the particular experience of that agent so elicited.
A measurement outcome is personal to the agent.
Copenhagen versus QBism

Copenhagen interpretation:
A measurement corresponds to a laboratory procedure.
A measurement outcome is a classical pointer reading.
A measurement outcome is objective.
Split between classical macro-world and quantum micro-world.

QBism:
A measurement is any action an agent takes to elicit an experience.
A measurement outcome is the particular experience of that agent so elicited.
A measurement outcome is personal to the agent.
Split between the agent’s internal experience and the world external to the agent.
A measurement is an action on the world by an agent that results in the creation of an outcome — a new experience for that agent.
A measurement is an action on the world by an agent that results in the creation of an outcome — a new experience for that agent.

The disagreement between Wigner’s account and his friend’s is paradoxical only if you take a measurement outcome to be an objective feature of the world, rather than the contents of an agent’s experience.
Back to Wigner’s friend

- A measurement is an action on the world by an agent that results in the creation of an outcome — a new experience for that agent.

- The disagreement between Wigner’s account and his friend’s is paradoxical only if you take a measurement outcome to be an objective feature of the world, rather than the contents of an agent’s experience.

- When the friend opens the box, she creates an experience for herself: cat dead or cat alive. This is a private experience, inaccessible to Wigner.
Back to Wigner’s friend

• A measurement is an action on the world by an agent that results in the creation of an outcome — a new experience for that agent.
• The disagreement between Wigner’s account and his friend’s is paradoxical only if you take a measurement outcome to be an objective feature of the world, rather than the contents of an agent’s experience.
• When the friend opens the box, she creates an experience for herself: cat dead or cat alive. This is a private experience, inaccessible to Wigner.
• So there is an outcome in the friend’s experience and none yet in Wigner’s. Of course their accounts differ.
A measurement is an action on the world by an agent that results in the creation of an outcome — a new experience for that agent.

The disagreement between Wigner’s account and his friend’s is paradoxical only if you take a measurement outcome to be an objective feature of the world, rather than the contents of an agent’s experience.

When the friend opens the box, she creates an experience for herself: cat dead or cat alive. This is a private experience, inaccessible to Wigner.

So there is an outcome in the friend’s experience and none yet in Wigner’s. Of course their accounts differ.

If Wigner goes on to ask his friend about her experience, then the disagreement is resolved the moment he receives her report, i.e. when it enters his own experience.
Botched attempt at a Quantum Bayesian account of Schrödinger’s Cat in Scientific American

Standard interpretation: Wave function implies cat is both dead and alive.

Quantum Bayesianism: Wave function describes mental state only; cat is either dead or alive.
Asher Peres:

Unperformed experiments have no results.
QBism puts the agent at the center

<table>
<thead>
<tr>
<th>Asher Peres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unperformed experiments have no results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent undertaking an experiment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>This experiment has no outcome until I experience one.</td>
</tr>
</tbody>
</table>
QBism puts the agent at the center

Asher Peres:
Unperformed experiments have no results.

Agent undertaking an experiment:
This experiment has no outcome until I experience one.

Schrödinger to Sommerfeld (1931):
Quantum mechanics forbids statements about what really exists — statements about the object. It deals only with the object-subject relation. Even though this holds, after all, for any description of nature, it evidently holds in quantum mechanics in a much more radical sense.
Conclusion (QBism and the Greeks)

- Everything any of us knows about the world is constructed out of his or her individual private experience.
Conclusion (QBism and the Greeks)

- Everything any of us knows about the world is constructed out of his or her individual private experience.
- Hence it can be unwise to rely on a picture of the physical world from which personal experience has been explicitly excluded, as it has been from physical science since the ancient Greeks.
Conclusion (QBism and the Greeks)

• Everything any of us knows about the world is constructed out of his or her individual private experience.

• Hence it can be unwise to rely on a picture of the physical world from which personal experience has been explicitly excluded, as it has been from physical science since the ancient Greeks.

• The recognition that science has a subject as well as an object liberates us from the grip of an ancient Greek maneuver that worked for over two millennia, but tripped us up in the 20th century. QBism restores the subject-object balance and thus clears up the obscurities and ambiguities of the interpretation of quantum mechanics.